Clay illuviation provides a long-term sink for C sequestration in subsoils
نویسندگان
چکیده
Soil plays a key role in the global carbon (C) cycle. Most current assessments of SOC stocks and the guidelines given by Intergovernmental Panel on Climate Change (IPCC) focus on the top 30 cm of soil. Our research shows that, when considering only total quantities, most of the SOC stocks are found in this top layer. However, not all forms of SOC are equally valuable as long-term stable stores of carbon: the majority of SOC is available for mineralisation and can potentially be re-emitted to the atmosphere. SOC associated with micro-aggregates and silt plus clay fractions is more stable and therefore represents a long-term carbon store. Our research shows that most of this stable carbon is located at depths below 30 cm (42% of subsoil SOC is located in microaggregates and silt and clay, compared to 16% in the topsoil), specifically in soils that are subject to clay illuviation. This has implications for land management decisions in temperate grassland regions, defining the trade-offs between primary productivity and C emissions in clay-illuviated soils, as a result of drainage. Therefore, climate smart land management should consider the balance between SOC stabilisation in topsoils for productivity versus sequestration in subsoils for climate mitigation.
منابع مشابه
Distribution and classification of soils with clay-enriched horizons in the USA
a r t i c l e i n f o In Soil Taxonomy three diagnostic subsurface horizons reflect clay enrichment: the argillic, kandic, and natric horizons. Clay illuviation is recognized in Soil Taxonomy at some level in 10 of the 12 orders, including the percent of the soil series in the USA contain taxonomically defined clay-enriched horizons. However, many other soils contain Bt horizons that do not qua...
متن کاملPrediction of long-term slake durability of clay-bearing rocks
A research program was conducted on different clay-bearing rocks selected from the Ilam, Sarpol-e Zahab and Tajarak regions (Iran) to predict their slaking characteristics. The new durability apparatus (nested mesh drums) separates disintegrated particles varying from > 25.4 to < 2 mm as the drums were rotated. On the basis of the particle size distribution, the disintegration ratio (DR) was us...
متن کاملErosion of upland hillslope soil organic carbon: Coupling field measurements with a sediment transport model
[1] Little is known about the role of vegetated hillslope sediment transport in the soil C cycle and soil-atmosphere C exchange. We combined a hillslope sediment transport model with empirical soil C measurements to quantify the erosion and temporal storage of soil organic carbon (SOC) within two grasslands in central California. The sites have contrasting erosional mechanisms: biological pertu...
متن کاملEffects of Neonatal C-Fiber Depletion on Interaction between Neocortical Short-Term and Long-Term Plasticity
Introduction: The primary somatosensory cortex has an important role in nociceptive sensory-discriminative processing. Altered peripheral inputs produced by deafferentation or by long-term changes in levels of afferent stimulation can result in plasticity of cortex. Capsaicin-induced depletion of C-fiber afferents results in plasticity of the somatosensory system. Plasticity includes short-term...
متن کاملEffect of a long-term cultivation and crop rotations on organic carbon in loess derived soils of Golestan Province, Northern Iran
The effects of 34 years cultivation on organic carbon content of the loess derived soils were studied in Golestan province, northern Iran. Soil organic carbon (SOC) showed significant decrease in most of cases. The minimum and maximum SOC decreases were 4 and 51.14 Mg C ha-1/30 cm for 34 years. In a few cases there was an increase in SOC up to 16.93 Mg C ha-1/30 cm over the period of 34 years i...
متن کامل